Forma trigonométrica de um número complexo

Forma trigonométrica de um número complexo


Sabemos que um número complexo possui forma geométrica igual a z = a + bi, onde a recebe a denominação de parte real e b parte imaginária de z. Por exemplo, para o número complexo z = 3 + 5i, temos a = 3 e b = 5 ou Re(z) = 3 e Im(z) = 5. Os números complexos também possuem uma forma trigonométrica ou polar, que será demonstrada com base no argumento de z (para z ≠ 0). 
Considere o número complexo z = a + bi, em que z ≠ 0, dessa forma temos que:cosӨ = a/p e senӨ = b/p. Essa relações podem ser escritas de outra forma, acompanhe: 

cosӨ = a/p → a = p*cosӨ 
senӨ = b/p → b = p*senӨ 


Vamos substituir os valores de a e b no complexo z = a + bi. 

z = p*cosӨ + p*senӨi → z = p*( cosӨ + i*senӨ) 
Essa forma trigonométrica é de grande utilidade nos cálculos envolvendo potenciações e radiciações. 

Exemplo 1 
Represente o número complexo z = 1 + i na forma trigonométrica. 
Resolução: 
Temos que a = 1 e b = 1 



A forma trigonométrica do complexo z = 1 + i é z = √2*(cos45º + sen45º * i)


Exemplo 2 
Represente trigonometricamente o complexo z = –√3 + i. 
Resolução: 
a = –√3 e b = 1 


A forma trigonométrica do complexo z = –√3 + i é z = 2*(cos150º + sen150º * i).

Nenhum comentário:

Postar um comentário