Potência de númeos complexos e exérco resolvido



Potências e curiosidade sobre a unidade imaginária
Potências de i: Ao tomar i=R[-1], temos uma sequência de valores muito simples para as potências de i:
Potênciai2i3i4i5i6i7i8i9
Valor-1-i1i-1-i1i
Pela tabela acima podemos observar que as potência de i cujos expoentes são múltiplos de 4, fornecem o resultado 1, logo toda potência de i pode ter o expoente decomposto em um múltiplo de 4 mais um resto que poderá ser 0, 1, 2 ou 3. Dessa forma podemos calcular rapidamente qualquer potência de i, apenas conhecendo o resto da divisão do expoente por 4.
Exercício: Calcular os valores dos números complexos: i402, i4033 e i1998. Como exemplo: i402=i400.i2 = 1.(-1) = -1
Curiosidade geométrica sobre i: Ao pensar um número complexo z=a+bi como um vetor z=(a,b) no plano cartesiano, a multiplicação de um número complexo z=a+bi pela unidade imaginária i, resulta em um outro número complexo w=-b+ai, que forma um ângulo reto (90 graus) com o número complexo z=a+bi dado.
Exercício: Tomar um número complexo z, multiplicar por i para obter z1=i.z, depois multiplicar o resultado z1 por i para obter z2=i.z1. Continue multiplicando os resultados obtidos por i até ficar cansado ou então use a inteligência para descobrir algum fato geométrico significativo neste contexto. Após constatar que você é inteligente, faça um desenho no plano cartesiano contendo os resultados das multiplicações.

Nenhum comentário:

Postar um comentário